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Fig. 2 Graph of dimensionless pressure p~ versus inward polar

deflection (in radii) for a/h = 100, both symmetric and asymmetric

branches (see text). computod with 40 modes through the deflection

*corresponding to , thon the remainder with 24 modes.

Fig. 3 Analogue of Fig. 2 for a/h 200. Analogous computations

with 60 modes and 40 modes rospoctivoly .

Fig 4 Shape of planar cross—scction (through axis of symmetry)

of asymmetrically deformed shell for both a/h = 100 and 200 and p

at the respective asymmetric minima . The dashed piece of circle shows

the remainder of the undeformed shell; the shapes oX the synnnetricaUy

deformed shells for p = p
~ are not shown because each intersects

itself and , hence , is not physically realizable a priori. -
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BUCKLING OF A CO~1PLE’rE SPh ERICAL SHELL UNDER UNIFORM EXTERNAL PRESSURE

by

h arry E . Jt~tuch , Neal U. Jacobs , and Jonathan L. Marz

1. Int roduction

- A brief history and discussion of the title topic appears in the

preliminary sketch of this research, [ii), where reference is made to

~: 1), [3) , [5), [6], [13], and [14]. The present paper is self—contained .

The immediate goal of the research and the paper is to compute the

S 
lower critical pressure of a complete spherical shell for plausible values

S of radius—thickness ratios. We deal with axisymmetric buckling only here,

• and this assumption is retained throughout the paper without further

mention . It is roca1i~ J that the Jowi~r critical pressure is the smallest

(greatest lower bouiid)of the pressures for which the ini t ial ly perfect

shell assumes an axisymmotric buckled , i.e., non—spherical shape and thus

S represents a theoretical absolute least failure load for the shell.under

axisyminetric deformation. In view of the marked imperfection sensitivity

of the shell ([5), [6], [13), and Section 7 below), the lower critical

S pressure may , under certain circumstances, be the only reliable theoretical -- 1

failure load , as was suggested by von Karman and Tsien in their pioneer

work . At any rate the low values obtained here, roughly 7% and 5% of

the classical linear buckling loads for the radius—thickness ratios 100
S 

and 200 , respectively , make the intuitively sensed strength of the

complete spherical shell seem illusory . Coupled with related results

I for the axial compression of circular cylinders ([7] , [4]) . this in-

dicates tho caution necessary in the use of these highly symmetrical

- thin-walled structures in contrast to flat plates under edge compression,

which exhibit postbuckling s tab i l i ty.  Indeed , tho discovery that certain 

-55-• _-•_- _ --_-• S _ - _ • ‘5. - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~ -~~~~~ - r~~~~~~~~~~~~~~~~~~~~~~——
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“op tim ized ” st ructu r ’s , e .g., fl a t  panols reinforced with stringers ,

exhibi t imper fec t ion -s en s it i v i t y  when under end compression indicates

that it may be nccoss~try more often to perform non—linear lower critical

load analyses in addition to the now customary upper critical load ,

i.e., bifurcation or snap—through analyses.

The basic equations used in the present analysis are the small

finite deflection form of E. Reissner ’s coupled pair of non—linear

ordinary differential equations for axisymmetric deformation of axi—

symmetric shells [12) .

The method of solution is a version of the Galerkin or spectral

method in which the complete set of functions used is that of the as-

sociated Legendre functions of order one. These functions are the formal

elgonf unctions of the dif ferent ia l  operator appearing in the different ia l

equations so that the linearized system is diagonal . In the opinion of

the authors the spectral method has three features to recommend it:

(a) it is conceptually simple and relatively straightforward to apply,

(b) the resulting Fourier—type analysis of the relevant functions into

the various modes is enlightening and relates the non—linear analysis

directly to a familiar method of linear analysis , and (c) the method

extends directly to certain more complex situations, where partial

rather than ordinary different ia l  equations govern .

The progress to be reported here , above and beyond that in till ,

is , f i rst , the exhibition of formulas in closed form for the cubic

integrals ~~~~~~~~ see Section 3, and the consequent evaluation of them

by th e program TABLE (see Section 4) ,  and , second , the numerleal solution

of tho coupled quadratic equations obtained from the spectral method by

means of the program , SP1~~RE (sco Section 4) .

-: - .- -~- .~~_-- - ~S - 
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As mentioned in till , the :irst—namod writer had pursued the present

research as far as represented there independently, at which time he

- became aware of [1] , in which the same differential  equations (with

different  interpretations for the dependent variables) are solved by 
S

quite a different method, parallel shooting, which is confined in principle

to ordinary differential equations. The choice of data presented here

is motivated by tho desire to give results both of autonomous interest

-~ and of sufficiently different  character from those in [1) to justify the

presentation of tho present method as an alternative (see Section 5 for

comparison of results) . Particular attention is called to Figure 4 and

the relevant discussion in Section 5 and the two other “experimental

discoveries” there .

Some remarks on a method of incorporating imperfection—sensitivity

into the theory given here are given in Section 7.

• 2. The Basic Equations

The source is Reissner [12 , Sections 2—4, 9—11, in particular

S Eqs . (63)— (69) ] .  The middle surface of the undeforaned spherical shell

of radius a and thickness h is represented in cylindrical coordinates

(r ,z , 9) by r = r
0 

= a sin ~~, z = z0 = —a cos ~~, where ~ is the co—

latitude as shown in Fig . 1, where cross sections (say, e = 0) of the

S 
undeformed and deformed shells are shown, Assuming axisyinmetric de—

formation with the z axis as axis of syimnetry , one can represent the

middlo surface of the deformed shell by r = r0 + u, z = z0 + w , whore

u and w, functions of ~~, are respectively the radial (horizontal) and

axial (vertical) components of the displacoment vector (u,w). It is

important to note that u <0 represents displacemont inward toward

-5 -- - 5—  
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the axis of symmetry , while w > 0 in the southern hemisphere and w < 0

in the northern hemisphere represents displacement inward toward the

equatorial plane z = 0 • The angle b cLwccn the radial (horizontal)

d irection and the ra y tangent to t he mer id ian of the und eformed middle

surface in the dIrection of increasing ~ at any point with colatitude

~ is denoted by ~~ and the corresponding angle at the displaced points

(coming from those with colatitudo ~
) on the deformed middle surface is

S deno ted by ~p. (See Fig. 1.)

The first basic dependent variable ~ is def ined by

(1) 
~~

= — (
~p —  %)

It is important to observe that in the situation shown in Fig. 1, i.e., an

inward directed dimple at the south 1)010 (north pole), one has ~ > 0 (< 0).

One defines the stress function ~ by

(2) $ = r011 a(s in ~)H

4
where 11 is the horizontal ( rad ia l )  stress resultant  at all points on the

deformed shell which were originally specified by ~ on the undeformed

shell. It is important to observe that near the south pole $ < 0  implies

compressive stress , with  the same implication for the opposite inequali ty

at the north pole. 
S

If the shell is subjected to a uniform inward normal pressure P and

is in the membrane state , ~ 0, then one has

V = —~~ Pa cog sin

Now one def ines  the second basic dependent variable $ by

i 2(3) $ = ~ pa cos sin +

so that $ describes the dev i a t i on  of the stress funct ion $ from the 
S

membrane s ta te ,

S 
_ _

S—S 
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Now , if D = Eh 3/l2( 1 — v2) is the flexural  r i g i d i t y,  C = Eh ,

S whore 1 is Young ’ s modulus , and V is Poisson ’s ratio, then the basic

S differential equations arc

- - (4a) (D/a)[~3
” + ~~

‘ cot ~ — (cot 2
~ + V)~~] = — $ — ~ pa2

~ + ~~ cot ~

(4b) $“ + $‘ cot ~ —(cot 2
~ — ‘v) $ = Ca~ — ~~a~

2cot ~

where the prime signifies differentiation with respect to ~ . Equations

(4a) and (4b) are deduced from [12, Eqs. (66) and (67)] by setting

= = 0 and neglecting all terms on the left  which do not appear

• in the classical Reissner—Meissner equations and all those on the right

which do not have corresponding terms in the shallow—shell approximations

to these equations [12 , Eqs. (72) and (73)]. S

S Equations (4a) and (4b) already permit the determination of

However , it is desirable to be able to compute the buckled shape of the

shell , f rom ~ and ~ . For that purpose we consider

Eqs. (63), (68), and (69) of [12] and obtain after setting P
11 

= P~, 0 ,

the dimensionless displacements

(5a) u(~) — 
( l— v) .E~. ~~~ + 

$‘ sin ~ — v _±_. cos
a 2 Rh El~

+ ~ sin2
~ cos — ~ sin ~

~~~~ S _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

_ _ _ _ _ _

5-.— ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ L S S ~L~~’~_ -
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(Sb) ~(F) :- — 

~~~~~~~~~ 
~~~~~ s~’~ ~ 

— — (1
;
~~ ~fL~ cos ~ d~

- 
— V S  i~ita 

sin ~~d~~ + 5~~~~~— cos ~~~~

— 5 B sin 2
~ cos ~ d~ — 5 ~

2sin ~ d~

-

. 

+ 5 ~ sin ~ d~ — $ j~j— ~ cot ~ cos ~

+ V $  ~~~~~-~~~~~COS ~~d~~+ v~ f ~~~~
2
sin ~~cos

2
~~d~~ ,

S where 0 < ~ ii is that value of ~~, to be chosen ad libitum , for

which the axial displacement vanishes, i .e., w(~0) = 0. The first terms

on the right of (5a)—(5b), respectively, are the respective components of

S the membrane contraction with the normalization indicated .

It should be noted that all cubic terms in Reissner’s formulas have

I been deleted so that this is a “quadratic” theory (see Section 7 below

S for further comment on this point). The modifications of the equations

S necessary to study imperfections are indicated in Section 7.

F -
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3. Method of Solution of the EquatIons

The key to the solution of (4a)—(4b) and the subsequent evaluation

of (5) is the observation that , tile common differential operator

(6) ( )“ + ( ) ‘  cot ~ — ( ) cot
2
~

on the left of (4a)—(4b) can be written

C )“ + ( )‘ cot ~ — ( )(csc2~ 1) = L( ) + l( ) ,

whore

-
~ L(P (cos ~

) = -n (n+l)P (cos ~~~~,

P1(x) being the associated Legendre function of order one and degree n

[15, Chapter XV, §15.5]. Thus P
1
(cos ~ is an everywhere finite eigen-

function for (6) with eigenvalue 1 — n(n+l).

Two facts about the Legendre polynomials P (x) and associated

Legendre functions of first order should be noted. One has, with

x = cos ~~,

• (7a) P~ (x) = (1 - 2
)* dP (x)/dx

(7b) (d/d~~P (cos ~ -(sin ~~dP (COS ~~/dx = —P
1(cos ~~~~,

(7c) (d
2p (cos ~~/d~~] + (cot ~

) (d/d~~P (cos ~ = _n(n+l)P~ (cos ~~~~,

(7d) (1 — x2)[d2P1(x)/dx2] - 2x(d/dx)P
1
(x) — [11(1 — x2)]P1(x)

= —n(n+l)P~ (x)

For technical reasons, which will become apparent later, It is con-

venient to introduce x = cos ~ as independent variable in (4a)— (4b) to

obtain [it should be understood that we are writing 8(x) = ~(cos ~
)

rather than ~~~~ etc.]

(81) 
~[(i 

- x2) - 2x - 
( ~~~~ 

+ V>] = —$- B + 
(1_x2)*

~~ I (8b) (1~~~x
2
)4_ 2x~~~~_ (. x

2 v)$ Ca8 2 2 X  
, I

- - ~~6J bocomcs -5
~~~~~f~_ .-
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(9) (1 - x2) (d2/dx2) ( ) — 2x(d/dx) ( ) — [x~/(i — x
2
)J ( ) .

Si nce P1(x), n 1,..., form a completo orthogonal sot on (—1,1),

it scorns reasonable to use them to find approximate solutions of (Ba) -(8b)

for proscribed p by the spectral . method . We set

1(l0a) 8 =  E A P  (x)
n nn= 1

• S
(lob) $ =  E BP(x)

n n
n=1

for fixed s, substitute in (8a)-(8b), expand the right sides out in

n = 1,..., retainIng only the first s torins , and then compare
S 

sides.
S 

As a first trivial but vital application of the method we determine

the classical linear buckling load p • Set 8 AP
1 

and $ = BP~crit It n

in the equations obtained from (8a)—(8b) by ignoring nonlinear terms ,

and obtain S

(D/a) {l - n (n+1) — v] = -B - ~Pa2A , [ 1 - n (n+l) ÷ V]B = CaA

On eliminating B and assuming A ~ 0, one obtains

(11) p = [n(n+1) — 1 + v] + 
~~~~~~ n(n+1) — 1 — V

Different iat ing ( i i)  with respect to n and equating the result

to zero give

(12) n(n+l) — 1 - V = 2[ 3(1 — v2)J è(a/h)

Substituting in (11) yields

S 2F 2 .  V h
(13) 

~ crit = 

[3( ;- -v2)1~~ 
— + 

2[3(1-~~ )1~~ 

;.

= 
[3(i~ v2)f~ 

e~~~

2

-- -5- 5 - - — - --
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whore L(h/a) is the paronthosjs.

Returning to (10), we define

(14a) (4~,m ,n) = 
~~ X

2
~~~ P~ (x)P~ (x)P~ (x) dx

—l (].—x )
~

1 dP dP dP
2 ~ m n= 1  x (l— x )— —  — — dx ,

dx dx dx

(14b) j J (P1)
2 
dx = 

2n (n+l)

and carry out the spectral method, first, by

substituting (10) in (8b) and comparing sides to obtain

(A) B = -[Cn/tn(n+l)-l-\flA +[Ca/2[n(n+l)-l-vl) E [( ~~,m ,n) /j
- 

S It n 
‘C,m=1

n = l,.. ,s , and then by substituting (10) in (8a) to obtain

(B) (~ pa
2 - (D/a)fn(n+1) - l+V ))A=B + E

C.,m=1

S n = 1,...,s . -

We introduce the dimensionless variables

(15.) B* = B / p a
2

,n n crit

= 

~
“
~crit 

= Pa
2
/Pcrit a

2

Dividing equations (A) and (B) by p
crit

a2, multiplying (B) by two, and

using (15) give

B* [3(1_v2)14 A
Ii 

— 
2L(h/a)fn(n+1)—l-vj h n

(A ’) t3(1~~Y2)1~ ~ r(~,m,nfl
+ 4L(hfa)[n(n+1)-l- \] ii 

C., m=1 L i~ 
!c.~m 

‘ S

J * h n(n+1)-l+v A1 — 
a 
4[3(1—V

2
)]~L(h/a) 

1 
-

1 

(B’) 
+ 2B* 

- 2 
~~~~~~~~~~ 

[
~~.1rn~n) 

] 

A~I3* 
= 0 , n = 1,..,,s.

-
L - _

_ _

~

-

~
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S •] (‘  cuiti pt it e t iL e shape nC t110 she] 1. corresponding to any solution

A
1

, ... ,A , h~ , . . . ,I of (A ’)  mtd (ii ’) we roprosent the middle

SU rta :C iii dirnt’n~: I ih~ss form as

(16) r U - u
— + — sin ~ + —

S a a a a
zz 0 w w

-
S — = — + — = — c o s  ~ ,_ + —

a a a a

and write in Eqs. (5a) and (5b),

(17) 
— ~~ 2L (h/a ) p *

- -4 Eh a 
.~~(1—V 2)

= ~~ 
2L(h/a)

.J~(1_v
2
)

Wi th the last def ini t ion one has
S

k * * 1
Z D  P (cos~~) ,

n f ln=1

and if one substitutes this and the truncated series for B in (16)

and (17) then numerical integration using the trapezoidal rule yields

the shape. The shape computation was effected by a simple auxiliary

FORTRAN program. The value of was taken to be It , i.e., the north

polo was taken to be fixed. The advantage of such a normalization will

be apparent in a moment.

In the program .SP}~~RE (see Section 4) used to solve (A’) and (B’) it

was necessary to incorporate a subroutine which for each solution

*
S P , A1,... computes some convenient deflection parameter. At first

glance (and in Ill]) it seems reasonable to use the south polar deflection

under the assumption that the equator is fixed (
~~ = ‘1/2) . In hindsight ,

if the abo 5cc mentioned auxiliary program had been used as the subroutine,

as is possible , then the fixed equator hypothesis would have boon as

5 - -  5-S ~~~~ -
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easy to in1plomont. However, the original polar deflection subroutine

uses the coofficionts A
1
,...,A ;  ~~~~~~~~ directly, and there as will

bo seen in Section 6 , tho simpl if icat ion brought about by setting

Is enormous . We then decided that half the resulting deflect ion is the

useful parameter for the symmetric deformations (see Section 5). Since

the resulting formulas are in SP1~~RE and may be of independent interest,

we reproduco them here .

We define
m~~~n

(18) t~(m ,n) = ~(n ,m) = 
{

2 m = n
2m+l

[0 nm 0(2)
p (n) = 1

1 n~~~1 (2)

q = asymmetric deformation
2 symmetric deformation.

= (
h
) 

2L(h /a)

,~3(l— v )

Then the polar deflection parameter v is given by

(19) qv = 
w (O) (l_v) K p* 

+ (l_
(l;V) Kp*)E (1_ (_l)fl~

l)A~

+ (l+v)K ~ (l_ (_l)
h1
~~)B* + ~~~ KP*A + ~ 

n(n+1) 
A
2 

S

n=l ~ 5 2 n=1 
2n+ n

s s 2
— K E 2n(n+1) A B* + (l+~)Kr E 2n 

A B*
2n+1 n f l  L 2n+l n n

S n—i n=l

* 
a (n—1+p(n—l))/2

+ ~ aB E A Z (4J — 2p(n—1)—l)Mm,2J — 2p (n—1)— 1)
n=1 n=1

* 
(m— l+p(m—l))/2

+ E nA E B E (41 — 2p(m—1)—1)A (n,2i — 2p(m—i)—1)
n=1 m=l

* 
a (m—1+p(m—1))/2 (n—1+p(n—l))/2

+ Z B E A E - (4i — 2p(m—1))(4j—1—p(n—i))
m-=l n=1 i=1 i=l

-- — •~~~—- — --5- —~~~~ — ~~~~- -~~~
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x A(21 — 2p (rn—i) —] . , 2j — 2j (n—I) _i)]

~ 
~~~~~~~~~~~~~~~~~~ * * 

S

— 

~~~ 

‘
, A B + E m (iti÷l)J~ ~ A

S ... fl1 ~ Jfl III Il
S 

m.=i n -l
-

S (n—l-L-p(n—1))/2
x E (41 — 2p (n—l) —l) j~(ni,2i — p (n — l)—l )

1=1
s—2

— 2’~K *P 2n (n+1) (n÷ 2) (n+3) 
A A~ ~2n÷1) (2nSf 5) (2n÷3~ n ni-2

~ 2n~~(n+1) 2 2 m(in÷l) A E— 

n l  (2~.1-1) (2~ _ 1)(2~÷3) A~ + 
m=l 2m÷l m n=l 

A

(n+p (n))/2
x Z (4i — 2p (n) —l ) .~(m— 1 ,2i — p (n) — 1)
i=l

s 
1) 

s (n+p (n) ) /2 S

S 
— 

m (m+ Am E A 

~ 

(4i—2p(n)—l) ~(m+l ,2i_P(n)_1)] . 
S

This formula will be established in Section 6. In practice only the

linear and the first non—linear terms make significant contributions.

4. Numerical Methods

For given a/h, V, and s numerical solution of the equations (A’)

and (B’) was performed by means of the program SPHERE , written for this

purpose but adaptable to other sets of non—linear equation. SPHERE is

modeled on the algori t hm proposed by E. Polak [10). The essence of the

S 
algorithm is a combination of the secant method with the method of local

variations . We found it to be very powerful .

Already in our first version of SPHERE, a PL/I double precision S

program , we omitted certain convergence accelerating features at the end

of Polak’s algorithm . It should be pointed out that there was little hope

I 

that  Polak ’s hypothesis on invortibility of the Jacobian would be verified

-5 5
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in our case a nd , thus , l i t t le hope of global convergenco . Indeed , in

continuation of solutions near the f i rst  relative minima of the pressure—

deflection i~raphs we often encountered suggestions of possible zero

Jacobians in the form of loss of significance messages from the linear

inversion subroutine. Correspondingly, we had little success in using

SPHERE to find many—mode solutions starting from wild guesses. Accord—

ingly the necessity for good starting and continuation procedures

manifested itself early. We shall describe some below.

Equations (A’) and (B’) were cast in the functional form 0(A) = 0,

where G(A) is a vector with s components, by putting all terms on the

left side in each equation of (B’) and then, for each attempted solution

vector A
1,...,

A , substituting the vector B~,...,B* computed from (A’)

into (B’). As a criterion for a “solution” we used I~ (A)ll � e , where

the norm is the usual vector norm, and € was a predetermined small

number, usually l0~~

• The coefficients (-~.,m ,n) required in 0(A) = 0 for a given a

were computed by a program TABLE on the basis of equation (27) in Section

6 and put on a disk which was read into core when SPHERE was run. Because

of the large size of the three—way array (‘t,in,n) for realistic S —

despite the symmetry and vanishing properties of Section 6, which reduce

64,000 to 3270 for s = 40, for example — and the initial demand for

double precision a linearization routine for both TABLE and SPHERE was

written (by James Korenthal). However, it developed that single precision

was quite adequate and that the linearization was quite time consuming

so that the (1~,m,n) could be read in directly with tolerable core

requirements and very substantial savings. Ultimately a still simpler - S

and faster FORTRAN version of SPHERE was prepared . Copies of aLL programs

~ 

_
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dc~cri bed itt thi 1)ai~c r are avai Iabl&! by rcquc~;t f uin the suthor~
;

Al]. di scuss ion of accu racy and tart i ng and continual ion procedures

hinges on the notions of critical modo and supercritical mode. Hero,

a mode is one the A’s, the n—th mode is A , and n is the index of
n

that mode . Then a mode is cri t ical  for a given value of a/h if i ts

index minimizes the expression (11) for p obtained from the assumption

of linear buckling or , equivalently,  the expression for p
~
’ obtained by

dividi ng (11) by (13), whore a/h is the given value. The mode whose

S4 index di f fers  from the minimizing index by one and whose associated value

of p~ is the next lowest is also called critical. Thus to each value

of a/h is associated uniquely a pair  of critical modes whose indices

are consecutive integers, in particular, one odd and one even . For the

two values of a/h, 100 and 200 , handled explicitly in this paper one has ,

fo r a/h = 100 , the values p~ = 1.019939, 1,003290, 1.000465, 1.009291

associated with the indices 16, 17 , 18, 19 , respectively, all other

indices giving higher values, so that the seventeenth and eighteenth modes

are critical with the even mode having lowest p
~ 
. Similarly for

a/h = 200 one has 1.004888 , 1.000174, 1.0017C’9 correspoading to 24,

25, 26, respectively, so that modes 25 and 26 are critical with the

odd mode having lowest p
~ 

. A supercritical mode for given a/h is one

whose index Is greater than those of the critical modes for that a/h. S

The critical modes play a role, first, in starting procedures. The

basic start ing strategy to f ind a solution of G(A ) = 0 for given p’1’

and a/h is to solve the smallest number of equations possible, i.e.,

S 
uso the smallest number of modes possible , and then extend this solution

to one wi th  moro modos by using i ts entries as the ini t ial  entries of a

guess fo r a higher number of modes , with  the remainder of the entries

being zeros. We call th i s  stratogy cxtcnd1n ~ a solu t ion b y ze ros. It

—~~~~~ - -~ 5~ 5~•5~~~~~~ 5’ 55 • •5 5 ~ S~ • - _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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is hampered , however, by the pccular fact, discovered in the course of

the numerical work, that it does not work unless the number of modes or,

equivalently, the index of the last (highest index) mode of the solution

to be extended is greater than the indices of the critical modes for

that a/h. More precisely, only solutions already containing super—

critical modes can be extended by zeros to obtain solutions with (even

more) supercritical modes.

“Subcritical” solutions can often be extended by zeros to ‘1longer

subcritical” solutions, but these cannot be extended further and represent

spurious approximations to solutions, analogous to the extraneous solu-

tions to the difference equations sometimes obtained when applying

finite—difference methods to differential equations.

Accordingly it is necessary to start by assuming small, quite Un—

physical, values of a/h such as .5 for which A
2 

is supercritical.

For fixed p
~ (for example, a little less than 1, if one is starting a

pressure-deflection graph of the postbuckling regime) one solves for

A
1
, A

2 
by starting with any reasonable initial vector, say, (1,0) —

an even more suref ire technique is given below. The resulting solution

is then extended by zeros with a sufficiently lare number of terms so

that the last index is supercritical for a higher value of a/h, say, 5.

The resulting solution is then continued by letting a/h vary from the

starting value to the new value. The new solution is then extended by

zeros until supercritical for a higher value of a/h, and so on until a

solution at the desired a/h is obtained. This is called zig—zagging.

It proved to be more efficient to zig-zag in reasonably small Increments

of a/h rather than to attempt to, say, extend the initial solution to

be suporeritical for the final value of a/h and then to continue to

that value . Also, it was found to be much easier to ~xtond solutions by

— 

~~~~~~~~~~~
v i~
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zero s or coil I inue soi .ut .  ions in the }~aramcter a/h for noar 1

and small dcfloctjøns rather than for ucar p ’ and the corresponding

larg e clc[lcct ions .

A pressure— deflection graph is not monotone in principle , and the

app roximations to it obtained by truncating the expansions at too small

an index are often even more oscillatory . Hence , the vital feature of

continuation by changing one of the A ’ s , typically A1 or A2 for

— 
asymmetric or symmetric solutions (see Section 5) , respectively, and

solving for P as one of the unknowns was built into the program . Once

this was done it was found that it was much more eff icient  to use this

S method of continuation even on monotone branches so that solution with p

fixed and continuation by varying p
~ 

were used ultimately only in the

starting procedure mentioned above. It was found that, in general, al—

S though not always, the polar deflection is a monotone increasing function

of A
1 

or A
2
.

For very large values (say, > 15 radii) of the polar deflection and

correspondingly large A ’s it is necessary to relax the demand on the norm

of the residuals by several orders of magnitude in order to continue

computing the graph efficiently since the residuals are extremely sen-

sitive to small changes in the A’ s when the first few of the latter are

large, as one sees by inspecting (A’) and (B’). However, any one solution

can be refined and the effect on the graph is visually imperceptible.

It should be noted that if one distinguishes symmetric from asymmetric

solutions to (4) (see Section 5) then the associated truncated expansions

can be identified easily . In fact , as noted there, the coefficients A~

and B with odd n v an i s h  for a symmetric solution . This reduces the

acl ual number of variables for even s to sf2. SPIU~RE is programmed

to take advunta~o of this by handling only variables with even indices

- S 

—
~~~~
=
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upoci receipt of the proper input , e f f ec t ing  a very substant i al saving

in i ug t i mu .

Finally we outline a foolproof procedure for solving G(A) = 0

when s = 2. Wo note that  by properties of the (~ ,m,n) obtained in

Section 6 , (1,1,1) = (2 ,2,1) = (2 ,1,2) = (1, 2,2) = 0 and (2 ,~~,l)

(1,2 ,1) = (1,1,2) . For s = 2 (A’) and (B’) become

B~ = 2L (h/a) (1-v) ~~)(-A~ + ~
(2; l , l)A 2A1)

B = 
2L (h / ) ( 5 ) (~.)(_A 2 + ~~ (l ,l ,2)A~ + ~~ (2 , 2 ,2)4)

S 

(~* — 

~ 
)~~1 

—2B~ ÷ }(1,2,l)A1B + ~.(2 ,l ,1)A 2B~
S 4~ .3(l—v )L(hla)

(* - (
~~~
) “ + ) A2= -2B + ~ (1,1,2)A 1B~ + ~ (2 ,2 ,2)A 2B~

4~)~(1—V )L(h/a)

~~~
- If one sets A1 = 0, I3~ = 0 so that one is seeking a symmetric solution ,

then one sees that the first and third equations are identically satisfied.

One could then substitute the second in the fourth to obtain an explicit

cubic for A
2 

which could be solved numerically, but that is not necessary

if one is using SPHERE since the use of initial guess vectors with the

first component zero is equivalent to solving that cubic by a secant—

local—variation method . If, however, one desires an asymmetric solution,

so that A
1 ~
( 0, then one finds that substitution of the first two

equations in the third leads to a cubic equation in A
1 

and A
2 
every

term of which contains A
1 

to the first or third power. Cancellation

of A
1 

leads to a quadratic which can be solved explicitly for A~ as

follows .
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A
4 (2 . ? . ?) J 8 ( ~~~

— \ - )  2 96 
________ 

(3—v ~
I. L (l , 1, J) ,(~~~— \ - ) ~~ 2 5 (1 , 1 , 2) (1— ’)  2

32 (5-\’) 1 ~L (h / ~ ) (l-v) Ih 
- 

* 1 ‘h
+ (1—v)  

(1, 1, 2)
2 L~~~1_~~ 

‘~~)P — — 
~~~~~~~~~~~~~~

Again this equation could be substituted along with the first and second

equations into the fourth equation to obtain an explicit cubic in A
2

whose solution together with this equation would solve G(A) = 0 for
*

- 
s = 2. But , again , i t  is more sui table , if one has guessed A

2 , to

calculate A
1 

from the preceding equation and use the resulting

as input for the program.

It should be mentioned that the discussion of imperfection—

sensitivity at the end of Section 7 suggests another starting procedure .

What makes starting so d i f f i c u l t  for  (A’)  and (B’) is that they are

homogeneous so that they possess a solution whose entries are all zero.

By insert ing a non-zero imperfect ion parameter C in the equations at

the end of Section 7 one obtains  inhomogencous equations of which non—

*t r iv ial solut ions wh ich continue the trivial solution for p = 0 are

easi ly found for small p~ . Continuation to the re la t ive  maximum

(or maxima)  and then to the  downward sloping part  of the graph followed

by cont inuat ion in c as € — . 0  would yield non—trivia l  solutions of
a n

the equations for the per fec t  shell which could then be continued for

smaller or larger def lec t ion.

5. Numer ica l  Resul ts

As a preli minary we note that  replacing ~ by IT — ~ in (4) while

replac ing ~~~~ by —~~~ , —~ I , r espect ive ly ,  shows that  if ~~~~ *(~
) are

a ~;o1utj on then _~~ (rT_ ~~ ) ,  _
~i ( r i_ ~~) arc , too . Eq u i v a l e n t l y,  (wi th  the

~;aIl, abuse of functional notation i-emarkc~J on in Section 2)

— -- 
-~ii~~~~
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-~ (—x), —v (—x) are also a solution of (8). From the remarks at the

beginning of Section 2 it is clear that this means tho physically

obvious fact that if one has a buckled shell then the mirror imago in

the equatorial plane of the unbuckled shell is also a buckled shell.

In particular, a solution ~~~~ for which ~~~~~ = —~~(IT—~~~ , $(~ =

or, equivalently, $(x) = —~3(— x) , fr ( x) = —~ (—x) will be called symmetric

because it manifestly represents a buckled shape symmetric with respect

to the equatorial plane . By the preceding remarks the asymmetric

solutions come in pairs , one being the mirror image (in the equatorial

plane) of the other. In terms of the truncated expansions of ~ and $

one observes that P1(x) = (l_x 2)~dp /dx and the fact that P (x) is even

or odd according as n is, together with ~(x) = -~(—x), ~1i(x) = — $(—x )

imply A
n 

= B* = 0 for odd n, that is, a solution is symmetric if and

only if terms with even indices only appear in the expansions. For this

reason symmetric solutions are referred to as even in our programs al—

though , in fact , they are odd as functions of x. Similar reasoning

shows that one of the paired , mirror—image,asyinmetric solutions differs

precisely from the other in the signs of the terms of odd index. The

presence of terms with odd indices in the expansions of asymmetric

solutions led us to call them odd—even in the programs although they

are neither odd nor even.

S For all the values of a/h used in our work we found for any even

supercritical s three solution branches of G(A) 0 issuing f rom the

vicinity of p’
~ = 1, A1 

= ... = A = 0, i.e., the (unbuckled) membrane

solution at the classical linear buckling pressure. By a solution

branch we mean a one-parameter family of values of p’1’ and associated

_________ - - -.~ C - r*
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— n m—1 rivial vt~cLor’; A each of whi &-h t is El os 0(A) 0 Uor I -i.

a s s oc i a i e l  value of p
* The p a r an tet e l -  is  e i the r  p

~~ 
i t self or one

of the A ’ .s, usually A
1 

or A 2 . One of the branches c:nsists of sym—

metric solutions and issues from the point for which P is the value

associated with the critical mode of even index for the given a/h, and

the other two issue from the corresponding point for the critical mode

of odd index, any one of the two representing the mirror images of the

solutions of the other. When the value of p’
~ 

and the value of the polar

deflection, which , we recall, is the right side of (18) for asynuneti-ic

solutions and half that for symmetric ones, are plotted as ordinate and

abscissa , respectively , one obtains two pressure deflection graphs, one

for the symmetric solution branch and one for the two mirror image asym-

metric solution branches since , as one verifies from (Sb), the pola—

deflection is the same for mirror images. We ignore the prebuckling linear

*membranc p:ieces of the graphs since they play no ro]e in determining

However, if imperfection—sensitivity were stud ied in the way sketched in

Section 7, then the corresponding parts of the graphs would be quite im—
S 

portant and would require much larger scales than those of Figures 2 and 3

here.

We take the lesser of the absolute minima of the two graphs in question

• for gi ven a/h to be p~ . Now for a/h = 100, 200, the two cases

handled in extenso, the two graphs , symmetric and asymmetric solutions ,

in each case are, most remarkably , virtually coincident and certainly so

when graphed on any reasonable scale . For that reason Figure 2 actually

- is t wo graphs , and the same is tru e of Figure 3. The second interesting

fact is that for both 100 and 200 the asymmetric minimum proved greater

than the symmetric  minimum but only by at most one digit in the last 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _
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significant figure retained . In t i )  for a/h = 9.13 (their Figure lb)

it is also true that the symmetric minimum is less than the asymmetric

minimum . On the hypothesis that this is always true for 9.13 � a/h � 200

we have included two other sets of data in Table 1, a table of lower

critical pressures. One is a run for a/h = 21.4 we made for symmetric

solutions only and tho other for a/h = 91,3 is taken from Figure 9 of 
S

Eli by graphical estimation . Other data included in Table 1 for the

sake of comparison are the values of k and 
~L’ 

the parameters used S

in f 1],  corresponding to our a/h and p
~ , respectively,as well as the

deflection parameter A of El] for the relevant solutions and our polar

deflection parameter v for our solutions and those of [1] where graph—

ical estimation permitted us to determine it. A is a root mean square

deflection, which we did not compute for our solutions.

We call attention to another u~ianticipatod result of our computations.

Figure 4 is the shape of the asymmetrically deformed shell for P = at

a/h = 100, but it is also the shape of the corresponding shell for

a/h = 200, within the tolerance of the graphical realization. There is

a hint here of an asymptotic shape as a/h -. ~ . If one regards the shell

as an inoxtensible membrane then a classical theorem of differential

S geometry in the large implies that the shell is rigid , i .e.,  admits no

(differentiable) bending . The only possible deflected shape is obtained

in the obvious way by violating differentiability and sawing off a cap

and reversing it. Now a careful inspection of Figure 4 discloses that S

the indentation resembles a piece of sphere of radius a subject to

* increasingly strong bending . But in the absence of elasticity theory

there is no a priori reason to select one sizo of cap over another, where— S

- 
1 as Figure 4 shows that the non—linear elast ici ty theory embodied in

Roissnor ’s equations predicts a def in i te  size , a central angle of a

5-- ~~~~—--~
—
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l it tle less than 120 for  a/h = 100 , 200 and possibly asymptot ica l ly .

Two Li t ial  po iuL.~i of di~ cus:~ i u.i accu racy and phys ica l  sign i  ii canCe

Thi ’ 1’ i , i i ~~~, i n  T: , IOu 1 for a/h :- 100 a tu l  2 0() a re accurate  a t least to

the nui tber of signi £ cant figures shown . This was determined by in —

creasing the number of modes unti l  the figures stabilized . The results

shown used 40 modes for a/h 100 and 60 for a/h = 200. The last

p robably approaches the limit of the present codes within practicable

S 
computer times. More modes and greater a/h requ ire improved codes

(see Section 7). As a sample of our results Table 2 shows A1,. . . ,A40

B~ , . .. , B 0 ( rounded to fou r fi gures to save space)for a/h = 100 ,

= .0674 , which is the asymmetric minimum .

As far as physical significance is concerned the likelihood or lack

of it of realizing defloctions of the magnitude shown in Figure 4 is

discussed in Section 7. However, the physical usefulness of the values

of in Table 1 for the thin shells (a/h ~ 91.3) should not be dis-

missed lightly. Discussions of imperfection—sensitivity indicate that

* ~5 5

the snap-through load can be degraded substantially toward p~ 

-— ~S - ~~~~~~~~~~ ~~~~ 
5 —
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TAI3I.E 1

JATh I~R CHITICAL r’m:ssuins

a/h K f i ]  P~ P1 [11 v A t1] 
5

9.l3** lO~~ 15.7 % .0105 3.4 2.5 *

21.4 1.82)a0 4 12.4 3 52X1.0 3 
~ 3.91 —

9l.3** 10~~ 7.2 %~~ 4.8~~0~~~ * — 1.2 *

100 8.3)0.0 6 6.73 % 4.08XL0~~ 1.41 —

200 2.08)0.0
6 

4.9 % 1.50.0~~ 1.4 —

I
**Results from Eli .

4Coinputed from symmetric solutions only.

~~stimated from graphs in El].

S -~~~~~__
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TAI3LE 2

EXPANSION COEFFICIENTS, a/h = 100, v = 1.41, p” = .0674, p
~ 

= .0673

[ 
A ’ s (road by rows ; 3.063 — 1 = 3.063 X 10

1 etc.).

5 
3.063—1 3,706—1 2.982—1 1.400—1 —1.858—2

—1.054—1 —9.791—2 —2.906—2 4.070—2 6.475—2

t 

- 3.749—2 —1.000-3 —3.911-2 —3.306—2 -4.589—3

2.011—2 2.398—2 9.561—3 —7.882-3 —1.494—2

—9.381—3 1.319—3 8.077—3 7 .192—3 1.462—3

—3. 669—3 —4 .740—3 —2. 156—3 1.208—3 2.753—3

1.912—3 —3.514—5 —1.396—3 —1.380—3 ~3~949_4

5.859—4 8.719—4 4.585—4 —1.693—4 —5.175—4

-
I

—1 .462—2 —1 .201—2 —6.366—4 1.110—2 1.474—2

• 8.111—3 —3 .290—3 —1.081—2 —9.419—3 — 1.305—3

6.499— 3 8.153—3 3.446—3 —2. 888—3 .-5.743—3

—3.72 4—3 5.447—4 3.353—3 3.002—3 5.751—4

-1.605—3 —2.030—3 —8 .863—4 5. 649—4 1.200 —3

8.022-4 —4 .930-5 —6 .201—4 —5. 882—4 —1.505—4

2. 667—4 3.756— 4 1.886—4 —7 .707—5 —2. 125—4

—1.601—4 —1.033—5 1.054—4 1.173—4 4. 803—5

1~
-~~~~ -~~-_~~~~~~~pS~~~~~~~~~~~ 
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6. Lcgend ro functions and the coeff ic ients  (~t,m ,n)

We need the recursion formulas t 15 , §15. 211

(20) xdP /dx = tiP + dP /dx
fl n n—l

(21) (l—x
2
)dP /dx = tiP — nxP

n n—i a

(22) xP = [(n+l)/(2n-t-l)JP + 1n/(2n+l)iP ~_1

(23) dP fdx = tIP /dx + (2n-l)Pn n-2 n-i

4 - 
From (20) and (21) we deduce

(24) (1_X2)dPn/dX = tn(n+l)/(2n+l)1(P 
l

_

~ 
~~~~

From (22) by induction we deduce

(n-i-p(n))/2
(25) dP /dx = E (4i—1—2P (fl))P

2~ ..1~~(~)

Finally from (20) and (25) we deduce
((n—l)+p(n—l)/2 

-

(26) xdP /dx = # 

~~~~~

(n-p (nW2
= np

n + (4J_ 3+2P(fl))P 2~ ..2~~ (~ ) •

since p(n—l)= l—p (n) .

Now apply (25) with n = t., (24) with n = m , and (26) to obtain

(2?) (C.,m ,n) x(l-x~) —

~~~~~ 

—

~~~~ ~~~ 
dx

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
— 2m+1

(n—p(n)/2
— P(2 1—1 —p(4. ),m.,-1,n) 1 + (4j—3÷2p(n)) S

j 1

X EP(2i—l—p ((~
),m—l ,2j—2+p(n)) — P(2i—1—p (t),m+1,2j—2+p(n))1)
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I

where P(4.,m ,n) 
~ ~~Fm~n 

dx
—1

Now according to a result of Ferrers and Adams t l5 , p. 3311 ,t l3 , p.306~

(28) / 2 
— _________________

i \ 2 &i-l A (c)
.1 P P P  d x =
—l 0 if .

~.i-m+n is odd or if  sum of two
indices is less than the third ,

where c =  ~ (4m+n), A(k) = 1.3 ...(2k—l)/k , k >0, A(0) = 1 . For

programming purposes it is better to extend the definition of A(k) by

setting A(k) = 0 , k < 0 , in which case the two-index sum property becomes

a consequence of the top line of (28). It is clear that P(~C,m ,n) is

symmetric in C,m ,n . It is clear that P(~C,m ,n) = 0 if ~C.i-m+n Is odd

because the integrand is then an odd function. That P(~C,m ,n) = 0 if ,

say, ~C > m+n follows from the fact that the Legendre polynomial P~ is

S orthogonal to all polynomials of lower degree, in particular, P P

It is important that (~C,m ,n) has the same symmetry and vanishing

S properties as P ( C ,in ,n) .  The symmetry is obvious from the definition

(14a) . Again , if .L > m÷n then

(C,m ,n) = ~C( C+l) 
~ 

(P~~1 
- P~~,1)x —

~~~~

. dx

by (24). But the factor of the integrand outside the parenthesis is a

polynomial of degree m+n-l, and both P~~1 
and P~ ,1 are orthogonal to

it since ~t÷i > C—i > m+n—l . Finally , the same formula shows that if ,

say , C.. is odd and m and a even then (f ,m ,n) = 0 since the inte—

grand is odd . The same is true of ~C,m ,n all odd . This exhausts the

cases where 4..i-m+n is odd for fixed C in the first position . By sym

metry, then, (~C,m ,n) = 0 for 6m+n odd .

We now wish to establish tho enumerative formulas
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(29) ~f N3 
+ (N—2 ) 3 

-t- l2(N
2-~ (N -2) 3) + 20 ( N4 -N - 2) 1,

+ 12(N—1)
2 

+ 20(N—1) T

for the number of distinct non—zero (~C,m ,n) with 4m ,n ~ N with N

S 
even or odd, respectively, i.e., in viow of the symmetry, the number

of non-zero (~C,m ,n) with N � ~C � m � n. We reason as follows. If

N is even, then there are N/2 (~C,m,n), ~t. � m ~ a, of the form (N,N,2k),

namely, for k l,...,N/2; N/2 of the form (N,N-1,2k—1), namely, for

k = l,...,N/2; N/2 — 1 of the form (N,N—2,2k), namely, for

k = 1,...,N/2—l ; N/2—2 of the form (N,N—3 , 2k—l) , namely, for

k = 2,...,N/2—1; etc., down to 1 = N/2 — (N/2—l) of the form (N,N/2,N/2)

for a total of N/2 + (1 + . .. + N/2) = N/2 + (N/2)(N/2+l)/2 = N2/8+ 3N/4.

We can repeat this argument with C =  N—2, N—4,...,2 to obtain

1 N 2 ~ 
N 1 N/2 2 3 N/2

~~~Z ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
n even a even m=1 n~ 1

= h(2 N/2)3 
+ 3(N/2) 2 

+ N/2) + N(N+2)

1 3 2
= ~1~(N 4- 12N + 20N).

Similarly, there are (N—2)/2 of the form (N—l ,N—l ,2k) ; (N—2)/2 of

the form (N—l,N—2,2k—l); (N—2)/2 — 1 of the form (N—l ,N—3,2k) , namely,

for k = l , . . . , (N—2 )/2  — 1; (N—2)/2 — 2 of the form (N—1,N—4,2k—l),

namely for k = 2, . . .,(N/2)/2  - 1; and so on down to 1 = (N—2)/2 —
(N/2 — 2) of the form (N— 1,N/2,N/2-l) for a total of (N-2)/2 +

(1 + ... + (N—2)/2 ) . Repeat ing the argument for those of the form

(N—3 ,N—3 ,2k) , etc., one sees that the grand total for C =  N—1 ,N—3 ,..., 3
-

~ 

- is tho same as that obtained above but with N replaced by N—2. Hotice ,

for N oven the total is the first line of (29) . But a reexamination of

the last part of the combinatorial reasoning shows that we have established

— -—- —— S .
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that  the number of non—zero (~~,m ,n) , .t. � in � a, with odd 4~ � N, N odd ,

is precisely equal to the number of non—zoro ( C ,m ,n ) ,  ~ � in � n , with

oven N—i . Using this fact we see that for N odd we get a total

of twice the last mentioned number, once for N and once for N—i , or

the second line of (29).

To complete our work it is only necessary to derive the formula

(19) of Section 3. The limits in all the integrals in (Sb) are ~ = 0 ,

11. The integral in the first term is thus —2, and the use of (17)

accounts for the first term. A typical term in the integral of B cos ~

in the second term of (5b) becomes, when one sets x cos

~ d,c 2 
dx = _A~[~~~1 + 2n+l]~~ 

- (1)
n+l
)

—(1 —

Here we have used the consequence

xdP /dx = [(n+1)/(2n+l)ldP /dx + tfl/(2n+l)ldP~~1
/dX

of (20) and (23). For the next term of (19) we take the next two terms

of (5b) and integrate the first by parts, noting that the integrated out

terms disappear. Then the same device as used just now and (17) complete

the term. The integral of B sin2 g cos in the last linear term

becomes
S 1

- E A J’ P1 (1 - x2) (x/./f_x2) dx
n=1 ~ -1

S 1
= £ A P (1 - 3x2)clx = (4/5)A

n n 2n=l . —l

since 1 — 3x~ = 2P2 , where (7a) and an integration by parts have been

used .

——--~~~~~~~~~~—S --S— S -- -~~
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Th e  computation in (19) of the first two non—u nbar terms is clear

since the substitution x = cos ~ turns the integrands, with the aid

of (17) , into inner product s of B with itself and with ~~~ , respectively.

The santo dovices convert the next non—linear integral , except for the

factor K in (18) , into

(29)
1. 2 s 1 dP dP

E B A 5  x — ~~~ x — j ~1dx
-1 1-x m ,n=l -l

* 
1 (m— 1+p (m— 1))/2

= E B  A $ (taP + E (4i -1 —2p (rn—i ) 
~ ~2i—2p (rn-i) ~~~~~

(n—l+p (n—i)) /2
x (tiP + 

j=l 
~~~~~~~~~~~~~~~~~~~~~~~~~ dx ~

where (26) has been used , which gives the result indicated without the

addend v in parenthosis. The next non—linear term in (5b) becomes

(up to a constant factor)

(30) -

f $*~~ cos ~ d~ = J~ 
( )  B*(_cot

2
~ P

1 
+ m(m+i)cot 

~

x ( E A  ~?)  sin

= 5  (~ B~~A x2 —~ 
__

~ ) d x
in a dx dx—l nt ,n=1

1 s dP
- 5 ( E A m(m+l) ~p -_!? - 

) dxin n in dx-l ni,ii=1

Here the first equality results f rom (9b) , (9c) ,  atid the resulting formula S

P1(cos ~ —cot ~ P
1(cos ~~ + m(m+i)P (COS ~~ .

But tho first term of the second equality in (30) is

0
~~~

5 $ B c o t  ~~cos~~~ d~~ ,

- .  . _______________________ __________________
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as is seen from (29) , and t h i s  yic1d~ the  miss ing  V • The rema in ing

term in (30) beComes

* 
1 ((n- .l ) .4 Sp(n—l) )/2

A rn (nz + 1) 
5 ~~ 

~tPn ÷ (4 i_ 2p (n_ i)_ 1)P 2j p(~~~l) l)> x
rn ,n=l —1 1=1

by (26) , and th i s  y ie lds  the next two terms of (19). Finally, from ( 2 4 )

we obtain
dP dP

• ~2 = 
_
~
j
~ + 

n(n+l) (P - 
~~ 

)
dx dx 2zi+ 1 n-i-i n-l

- 
.
~ and this  w i t h  (25) yields the final integral except for the indicated

constant factor

i s dP dP
-5 x

2
~
2cix = - 

$ x2 (l— x2) E A A —a —.~~ dx
m n  dx dx—l —l m ,n=1

= - 
~ m (m+l) A A (P - p ) ~1(n-i1)(p - p )

2tn-i-l in n rn— i rn-i- i 2n+ l n-i-i n-I.
m ,n=l —l

(n-i-p (n)) /2
+ (4i_2P (n )_ l)P

2i p ( n) . 1>x

which yields the final term s of (19) .

7. Discussion

In this section we wish to take up a few points about comparison

with different theories , other results and possible improvements or ex—

tensions.

First of all , in using E. Reissnor’s equations in small finite

deflection form and retaining only the terms shown, we are adopting a

quadratically non-linear theory (quadratic theory , for shortness), some—

times called a weakly non—linear theory . While this is admirably adapted

to spectral (Galerkin) methods , one might very well suspect its accuracy

or oven relevance , In comparison with physical reality and with the full

4 
non—linear equations of E. Roissner , for the large defloctions reported

iil ~ 1~~ - 

~~~~~~ S~~~~~~~~~~~~~~~~ -~~~~~~~ -~~—---—— --—~~~~~~ S
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* *in Section 5 in the post buckling range near p and on the rising

section of tho pressure—deflect ion graph to the right . While conceding

S the physical  unreal i ty of the rising section of the graph, we feel thore

are some grounds for a cautious optimism about both comparisons. As far

as the fully non-linear Reissner equations go, Mescall [81 has reported

only insignificant differences between the predictions of that theory and

the quadratic theory for large-deflection buckling of spherical caps , and

that  situation and ours are not so radically different . As fa r  as physical

reality goes , from the very beginnings of the type of approximate non—linear,

in fact , quadratic plate and shell theories we are using , namely , the

Fóppl-von Karmati plate equations , comparisons with experiment have been

remarkably accurate for deflections many times those for which the equa—

tions were originally estimated to be valid , e .g .,  tens of thicknesses

versus one thickness for the F.-v.K. equations. Indeed, there is almost

a metaniathematical principle of unexpectedly large range of validity in

many mathematical models in physics and technology. In the spherical case

the shape of Figure 4 has not been observed experimentally to our knowledge,

but that may well be duo to the failure of the elastic stress—strain

relations over portions of the shell at snap—through . In view of the

differential-geometric plausibility of Figure 4 as discussed in Section 5,

one can conceive of a carefully conducted experiment, possibly with

certain constraints during buckling , using material (not metal) of ox—

ceptionai elastic properties (linear elasticity through rather large

strains), that would yield the shape of Figure 4.

It is clear that the spectral method will not work with the fully

non-linear Reissnor equations , but the psoudospectra]. method will. The

psoudospectral mothod insort~ expansions in complete function sets in a

so t of d if f e r en ti a l  equations but , rather than reoxpanding the equations ,

- _ _ _ _  - S
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howcve r , a loss of accuracy per given number of nodes vis—a—vis spectral

methods in those cases .

Our computa t ions  have indicated that a/h = 200 is about the practical

upper limit for our method with our present programs . However, it would

be interesting to explore the possibility of applying -fast transform

methods as used by Orszag r91 in conjunction with spectral methods in

fluid dynamics . His requirement of a finite expansion condition is precisely

met here . The resulting shortening of the computation of the sums in (A’)

and (13 ’) might well make possible many mode computations , necessary for

200 < a/h - 1000 , in less time than presently required for a/h < 100 .

Finally, we show how to include the effect of small axisynimetric

imper fect ions  in Reissner ’s equations . The modified equations can be

solved numerically by our codes af ter  making the necessary obvious modifi-

cations. The result would be a modification of graphs to be Figures 2 and

3 near the origin (clearly one would need expanded deflection scales there)..

Unfortunately we did not possess the modified equations until the con-

clu sion of the numerical work reported here , and we do not have numerical

• results for thorn . The important thing to notice is that the imperfection

sensitivit .~ (snap—through) analysis and deep post buckling analysis appear

simultaneou sly as features of one non—linear large deflection analysis.

There i s amp le precedent for this observation in plate and shallow shell

analysis in the lilerature , but it bears reemphasizing .

Tho rR )(I1 Lied equations are obtained by adding the terms P$ cot ~ —

~ ~a~ P and —P~3 cot to the right sides of (-la) and (4b), respoctI’~-ely,

who ~-e 
S
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1
1’ ~~ E £ P (005 ~~

flz~l 
~

and e , 1 ~
‘ a ~ s , is the (small)  imp erfec t ion  parameter for the n t h

S mode imperfection . These terms were suggested by equations (26-28) of

[2 1 . They can be justified by inserting = — P In equations (III)

and (IV) of f 12~~,gcttiflg sin = sin ~ — P cos ~ , Cos = cos +

P sin ~ the re , and discarding the terms P~~ , ~~P~
2 

on the g rounds that

S they are essentially cubic.and , hence , negligible in a quadratic theory.

Tue result is to add the terms

1 
~ 

r(
~~n)1 £ A , — 2 E r~

,m ,n)i e B~ + p~~e
K[ n (n+l)-l-v 1 ~,m=l 

L ‘~,m=l L j  ~ m n

to the right side of the n—th equation of(A ’)and le f t  side of the n—tb

equation of (B ’) ,  respectively .

The following simple analysis based on (A’) and (B’) shows the ira—

* S

perfection—sensitivity of the shell. Take s even, A = B = 0

n = 1, .. . ,s—l and 
~A I  so small that its cubes are negligible.

Eliminate B* to obtain , after  ignoring cubes and dividing by A ,

(31) ~
* _~~~ 

2 A
K{s( s+ 1)—l— vl j  S

This shows that p~ will decrease line:rly from 1 for A small and

positive , i.e., inward deflected poles, with the indicated

If ~ is critical for a/h, ic ., (12) holds approximately then (31)

becomes , by (12)

~* _ ] .~~
. _ ç ~J s,s)

~~ -4~s +  ~) A  ~~ -~~~ ( s+ ~~~ v ,

on using the analysis in 115 , p. 30G1 for large s, where v is the

polar deflection in radi i .  Or one can write (a/h)A w , the polar

- 
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tie I ( ( -  t~ jolt in Lltichntjssos , to got Th om pson ‘s foz-mula [13),

1 — [3(1_ v 2)1~ 
~~
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